朱老师的难题

朱老师的难题

题目大意

算法

设多项式$G(x)$,$x^n$的系数表示一组选$n$个的乘积之和

那么$G(x)=1-\prod_{i=1}^n (1-A_ix)$

设多项式$F(x)$,$x^n$的系数表示一套选$n$个的答案

那么

要把$[x^n]F(x)$写成$\sum_{i=1}^n B_iC_i^n$的形式

构造:$F(x)=\sum_{i=1}^n \frac {a_i} {1-A_ix}$,这样$[x^n]F(x) = \sum_{i=1}^n a_i A_i^n$

考虑如何求出$a_i$

设多项式$H(x) = \sum_{i=1}^n\prod_{j!=i}(1-A_jx)$

那么$\frac 1 {a_i}=H(\frac 1 {A_i})$

$H(x)$可以分治求得,再上一个多项式多点求值就好了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include <stdio.h>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1 << 18, mod = 1811939329;

char buf[1 << 20], *p1, *p2;
#define GC (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin), p1 == p2) ? 0 : *p1 ++)
inline int _R() {
int d = 0; bool ty = 1; char t;
while (t = GC, (t < '0' || t > '9') && t != '-');
t == '-' ? (ty = 0) : (d = t - '0');
while (t = GC, t >= '0' && t <= '9') d = (d << 3) + (d << 1) + t - '0';
return ty ? d : -d;
}
inline int add(int a, int b) { long long c = (long long) a + b; return c >= mod ? c - mod : c; }
inline int sub(int a, int b) { a -= b; return a < 0 ? a + mod : a; }
inline void inc(int &a, int b) { a = add(a, b); }
inline int mul(int a, int b) { return 1LL * a * b % mod; }
inline int ksm(int a, int b) { int r; for (r = 1; b; b >>= 1, a = mul(a, a)) if (b & 1) r = mul(r, a); return r; }

int ntt_wi[2][N];
void pre_ntt() {
int f = ksm(13, (mod - 1) / N), g = ksm(f, mod - 2);
ntt_wi[0][0] = ntt_wi[1][0] = 1;
for (int i = 1; i < N; i ++) {
ntt_wi[1][i] = mul(ntt_wi[1][i - 1], f);
ntt_wi[0][i] = mul(ntt_wi[0][i - 1], g);
}
}

void ntt(int A[], int n, int ty) {
int i, j, k, t, w; int f, g;
for (i = j = 0; i < n; i ++) {
if (i < j) swap(A[i], A[j]);
for (k = n >> 1; (j ^= k) < k; k >>= 1);
}
for (w = 1; t = N / (w << 1), w < n; w <<= 1)
for (k = 0; k < n; k += w << 1)
for (i = k, j = 0; i < k + w; i ++, j += t) {
f = A[i], g = mul(A[i + w], ntt_wi[ty][j]);
A[i] = add(f, g), A[i + w] = sub(f, g);
}
if (ty == 1) return;
f = ksm(n, mod - 2);
for (i = 0; i < n; i ++) A[i] = mul(A[i], f);
}

void poly_inverse(int n, int A[], int B[]) {
static int AA[N];
if (n == 1) {
B[0] = ksm(A[0], mod - 2);
return;
}
int i, half = n >> 1, p = n << 1;
poly_inverse(half, A, B);

fill(B + half, B + p, 0);
copy(A, A + n, AA);
fill(AA + n, AA + p, 0);

ntt(B, p, 1), ntt(AA, p, 1);
for (i = 0; i < p; i ++) B[i] = mul(B[i], sub(2, mul(B[i], AA[i])));
ntt(B, p, 0);
}

struct poly : vector <int> {
poly() {}
poly(const vector <int>& cp) : vector <int> (cp) {}
int deg() const { return size() - 1; }
poly& operator %= (const poly& o);
} ;

poly operator * (const poly& lhs, const poly& rhs) {
static int A[N], B[N];
int i, p, n = lhs.deg() + rhs.deg();
for (p = 1; p <= n; p <<= 1);
copy(lhs.begin(), lhs.end(), A);
copy(rhs.begin(), rhs.end(), B);
fill(A + lhs.deg() + 1, A + p, 0);
fill(B + rhs.deg() + 1, B + p, 0);
ntt(A, p, 1), ntt(B, p, 1);
for (i = 0; i < p; i ++) A[i] = mul(A[i], B[i]);
ntt(A, p, 0);
return vector <int> (A, A + n + 1);
}

poly& poly :: operator %= (const poly& A) {
static int tmp[N], A0[N];
if (this -> deg() < A.deg()) return *this;

int i, n, p, m = deg() - A.deg() + 1;
for (p = 1; p < m << 1; p <<= 1);
reverse_copy(A.begin(), A.end(), tmp);
fill(tmp + m, tmp + p, 0);
fill(A0, A0 + p, 0);
poly_inverse(p >> 1, tmp, A0);
fill(A0 + m, A0 + p, 0);

reverse_copy(begin(), end(), tmp);
fill(tmp + min(m, deg() + 1), tmp + p, 0);
ntt(tmp, p, 1), ntt(A0, p, 1);
for (i = 0; i < p; i ++) tmp[i] = mul(tmp[i], A0[i]);
ntt(tmp, p, 0);

poly mult = vector <int> (tmp, tmp + m);
reverse(mult.begin(), mult.end());
mult = mult * A, n = deg(), m = 0;
for (i = 0; i < n; i ++) {
(*this) [i] = sub((*this) [i], mult[i]);
if ((*this) [i]) m = i;
}
erase(begin() + m + 1, end());
return *this;
}


int n, A[N], H[N];
int totn, ls[N], rs[N], B[N], C[N];
poly f, P[N];

void dc(int d, int l, int r) {
static int AAA[20][N], HH[20][N], AA[N];
if (l == r) { AA[0] = 1, AA[1] = mod - A[l], H[0] = 1; return; }
int i, mid = l + r >> 1, len = r - l + 1, llen = mid - l + 1, p;

dc(d + 1, l, mid);
for (p = 1; p <= (len << 1); p <<= 1);
copy(H, H + llen, HH[d]);
fill(HH[d] + llen, HH[d] + p, 0);
fill(H, H + p, 0);
copy(AA, AA + llen + 1, AAA[d]);
fill(AAA[d] + llen + 1, AAA[d] + p, 0);
fill(AA + 0, AA + p, 0);
dc(d + 1, mid + 1, r);

ntt(HH[d], p, 1), ntt(H, p, 1), ntt(AAA[d], p, 1), ntt(AA, p, 1);
for (i = 0; i < p; i ++) H[i] = add(mul(H[i], AAA[d][i]), mul(HH[d][i], AA[i])), AA[i] = mul(AAA[d][i], AA[i]);
ntt(H, p, 0), ntt(AA, p, 0);
}

void getp(int &p, int l, int r) {
p = ++ totn;
if (l < r) {
int mid = l + r >> 1;
getp(ls[p], l, mid);
getp(rs[p], mid + 1, r);
P[p] = P[ls[p]] * P[rs[p]];
} else P[p] = vector <int> {mod - B[l], 1};
}
void getans(int p, int l, int r, poly x) {
x %= P[p];
if (l == r) { C[l] = x[0]; return; }
int mid = l + r >> 1;
getans(ls[p], l, mid, x);
getans(rs[p], mid + 1, r, x);
}

int main() {
int i;
pre_ntt();
n = _R();
for (i = 1; i <= n; i ++) A[i] = _R();

dc(0, 1, n);
for (i = 0; i < n; i ++) f.push_back(H[i]);

for (i = 1; i <= n; i ++) B[i] = ksm(A[i], mod - 2);
getp(i, 1, n);
getans(1, 1, n, f);

for (i = 1; i <= n; i ++) printf("%d %d\n", ksm(C[i], mod - 2), A[i]);
}